
fiber producer APRIL 1982

Mixing Efficiency of Static Mixing Units in Laminar Flow

By Peter T. Allocca Koch Engineering Co., Inc.*

More than 30 different static mixing units are on the market worldwide. Most static mixer manufacturers claim that their product is the most efficient, but only a few can provide technical information on mixing efficiency and pressure drop. The only available information is often the number of layers created based on a simple layer formation law which, in fact, was never fully tested. (These exponential laws show that a mixing unit can produce over 106 divisions, but only 200 fluid layers can be verified optically, and even less by other methods.) Under these circumstances, it is difficult for the customer to select a suitable mixer since even the cheapest mixer is too expensive if it does not work properly.

This paper compares the mixing efficiency in laminar flow of the Koch/Sulzer static mixing unit with those of other manufacturers. Further, layer formation laws and manufacturer engineering data are compared with the actual mixing performance.

Test Procedures. The Swiss Federal Institute performed mixing experiments with most of the important static mixing devices; the apparatus used is shown in Figure 1. The test fluid was a glucose syrup with a viscosity of seven to nine Pa.s (7,000 to 9,000 cp). The homogeneity at the mixer outlet was measured with the conductivity tracer method where the tracer component (1) * had an electrical conductivity approximately seven times higher than the bulk fluid component (2). The flow ratio of tracer to bulk fluid was fed into the center of the pipe through a sparger (NPS 10 mm).

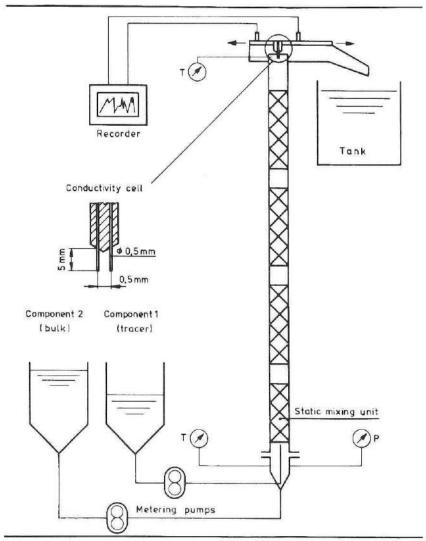


Figure 1. Test apparatus.

During the tests, a conductivity cell was moved slowly ($\cong 1 \text{ mm/min}$) over the mixer outlet cross section. From the recorded conductivity, local tracer concentrations x_i were determined. The mean tracer concentration \bar{x} and the standard deviation δ were calculated according to standard mathematical techniques as follows:

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
(a)
$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

The pressure drop was measured

during the mixing tests with a "Kistler" piezoresistive pressure indicator (range zero to 29 psi).

Mixing Units Tested. Table 1 gives the exact dimensions of the mixing units tested, layer formation laws, relative homogenization lengths and, where available, other information about homogeneity, such as δ/\bar{x} and pressure drop information expressed as NeRep numbers (See equation C).

The degree to which homogeneity is achieved is often expressed in terms of the number of layers or stream divisions formed. Some sort of an ex-

^{*}Presented at Fiber Producer Conference 1981.

^{*}Numbers in parentheses refer to references at end of article.

Mixing Units		Dimensions4		Table 1. Mixing Units Tested					Specified design data according to manufacturers sales brochures			
Name	Type	D (mm)	L _E (mm)	E (-)	L/D	tested (-)		N (-)	L/D _h (-)	Homogeneity N or δ/x̄ (-)	NeRe _D	
SMX	16	50	50	0.91	5	7	11	-	9	$\delta/x = 0.05$	1200	
SMXL	26	50	180	0.96	-	19	30	_	26	$\delta/x = 0.05$	250	
SMV	123)	50	50	0.88	-	7	14	-				
Kenics	-	50	80	0.85	9.6	19.2	28.4	2.2n	29 (38)	5.2 105	184	
Etoflo	HV	40	62	0.92	-	18.3	37	_	40	-	-	
Komax	-	50	50	0.86	-	-	25	2.2n	21 (32)	2.1106	592	
Lightnin	Standard	50	77	0.86	9.2	18.4	28	3.2-1	E .	-	236	
PMR	D-5	40	40	0.83	10	20	-	3n	-	-	-	
Cunningham	12	20	100	0.5	5	-	_	4n	51)	1024	-	
Toray	Hi-Mixer	40/54	41	0.46	-	6	10	2.4 ⁿ			1067	
N-Form	-	15	22	0.85	-	-	34	_	22	-	480	
Ross	ISG	40	40	0.35	10	14	24	2.4n	10(14)	2.1 106	7300	
1) used as mixin	g head for injec	tion molding	machines.	3) type	recommen	ded for turb	ulent flow	. 4) fors	ymbols used, se	e Nomenclature.		

Mixing unit	Measured	values	Comparisons					
	L/D for $\sigma/\bar{x}=0.05$	NeReD	Volume*	Holdup*	Diameter*	Length*	Pressure drop**	
SMX	9	1237	1	1	1	1	1	
SMXL	26	245	1.8	1.8	0.84	2.4	0.6	
SMV	18	1430	4.6	4.5	1.3	2.7	2.3	
Kenics	29	220	1.9	1.8	0.84	2.7	0.6	
Etoflo HV	32	190	2	2	0.84	2.7	0.6	
Komax	38	620	8.9	8.2	1.3	5.4	2.1	
Lightnin	100	290	29	27	1.4	15.3	2.6	
PMR	320	500	511	460	2.4	86	14.5	
Cunningham	-		No r	nixing				
Toray	13	1150	1.94	0.88	1.1	1.6	1.35	
N-Form	291)	5443)	4.5	3.8	1.1	3.6	1.40	
Ross ISG	102)	9600	9.6	3.4	2.1	2.3	8.6	

¹⁾ according to $\sqrt{2}$, 2) according to $\sqrt{3}$, 3) according to $\sqrt{4}$

Table 2. Comparison of static mixers.

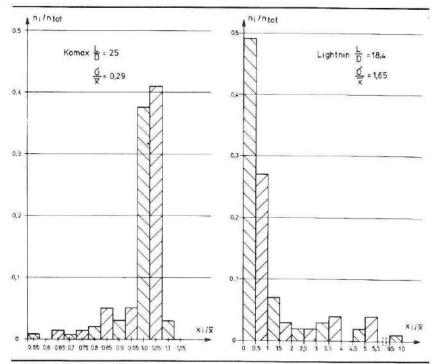
ponential layer formation law is used to calculate the number of layers formed as a function of the number of fluence of the volume ratios of the cutting edges. These laws, however, streams being mixed, and they claim

homogeneity at the mixing unit's exit - they make no allowance for the indo not accurately describe that all layers are of uniform

thickness, which is not true. Also, the layer formation laws cannot be verified experimentally (they predict the formation of over 106 layers but only 200 layers can be verified op-

Multiple of volume, holdup diameter and length as compared to SMX for equal η , \tilde{V} , Δp and σ/x

^{**} Multiple of Δp as compared to SMX for equal n, V, D and σ/\bar{x}



tically, less by other methods). Therefore, the number of layers formed cannot be regarded as an accurate quantitative measure of homogeneity.

Measured concentration frequency distributions are shown in Figures 3a, 3b and 3c. The Koch/Sulzer SMX static mixing unit has a much narrower concentration distribution (0.95 to 1.05) than either the Komax or the Lightnin mixer. Not shown is the distribution for the PMR mixer since practically no mixing takes place (the distribution for the PMR is the same as the inlet for 90 percent samples with $x_i/\bar{x}=0$ and 10 percent samples with $x_i/\bar{x}=10$ for x=0.1).

The desired degree of homogeneity for most industrial mixing applications is reached when the variation coefficient (δ/\tilde{x}) is 0.05 or less. A comparison of mixing units tested is shown as follows:

Mixing Unit	δ/\bar{x}	L/D
SMX	0.019	11.0
Komax	0.290	25.0
Lightnin	1.650	18.4

Figures 3a, 3b, 3c-Measured concentration frequency distributions,

Homogenization Lengths. In Figure 4, the measured homogeneity is represented as a variation coefficient δ/\bar{x} versus relative mixing unit length L/D. The variation coefficient at the mixer inlet was calculated according to:

$$\frac{\sigma_o}{\bar{x}} = \sqrt{\frac{\bar{x}(1-\bar{x})}{\bar{x}}} = \frac{1}{\bar{x}} - 1$$
 (b)

Accepting a variation coefficient of $\delta/\bar{x} = 0.05$ as homogeneous results in the homogenization lengths presented in Table 2. The SMX mixer has the shortest possible mixer length. The "low pressure drop" mixers require a relatively long homogenization length. The Koch/Sulzer type SMV, which is normally recommended for turbulent flow, is not as efficient as the type SMX. Some mixers need such extensive relative homogenization lengths that they are not efficient at all in laminar flow. The Toray and the Ross ISG mixers approach a relative homogenization length comparable to the SMX.

A comparison with the layer formation laws given in *Table 1* shows that some of the mixers have inefficient layer formation rates. The layer thickness predicted by the layer formation law for the actual measured homogenzation length for

the Kenics mixer (L/D = 27, 18 elements) would be:

$$\delta = \frac{D}{N} = \frac{50 \text{ mm}}{2.2^{18}} \approx 10^{-4} \text{mm}$$

The predicted layer thickness for Lightnin mixer (L/D = 100, 65 elements) would be:

$$\delta = \frac{50 \text{ mm}}{3.265-1} \equiv 10^{-18} \text{ mm}$$

Note that the size of a molecule is on the order of 10-6 mm. This also shows clearly that layer formation laws do not accurately describe the mixing result at the mixing unit's exit. (They might be used to demonstrate the mixing effect near the mixer inlet, but only if they are verified by mixing tests.)

This comparison, however, does not give a complete picture of the efficiency. For a correct comparison the pressure drop required for a homogeneous mix must be included.

Pressure Drop. The pressure drop (\(\Delta p_1 \)) in a static mixing unit with laminar flow is:

$$\Delta p_t = \frac{4}{\pi} NeRe_D \frac{\eta \dot{V} L}{D^3 D}$$
 (c) where NeReD is a constant depending only on the element geometry. For each test the flow rate and the viscosity was measured to

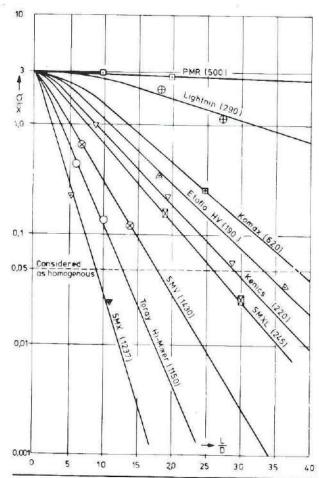


Figure 4. Variation coefficient as a function of relative mixer length. Values in () measured NeReD. Note that the SMV is the one recommended for turbulent flow.

determine Ap1. The viscosity was measured with a Contraves Rheomat 30 viscosimeter. Note that glucose syrup is a Newtonian fluid. For non-Newtonian fluids, η must be replaced by the representative viscosity η_{rep} , which is a function of the shear rate.

The resulting NeReD numbers are included in Table 2. A comparison with the values calculated from the sales brochures (Table I) shows that the measured pressure drop is always somewhat higher than the specified value.

Final Comparison Including Pressure Drop and Mixing Characteristics. A mixing task for a static mixing unit is completely specified by the product properties at operating conditions, flow rate, feed stream ratios, pressure drop, the required homogeneity, and often by a required pipe diameter as well.

We can now compare mixing units

which can compete with the given specification with respect to their volume (or liquid holdup), diameter, and length or the pressure drop if the diameter is specified.

Specific power requirement groups WIV' WID' WIL, as they were used by Streiff (5) allow such comparisons in a dimensionless form. These comparisons are given in Table 2 relative to the SMX mixer for a homogeneity of $\delta/\bar{x} = 0.05$ with $\bar{x} = 0.1$. Thereby, the following relations hold true:

Nomenclature

D	(m)	Mixing unit inside diameter
H	(m3)	Liquid holdup
L	(m)	Mixerlength
LE	(m)	Mixing element length
N	()	Number of layers
Ne	(-)	Newton number
n,nį	()	Number of elements or number of samples, number of samples in class i
P ₁	(Pa)	Pressure drop with laminar flow (1 bar = 105 Pa)
Rep	(-)	Reynolds number reffered to empty pipe
V	(m3)	Mixer volume
٧.	(m3/s)	Volume flow rate
W	{- }	Specific power requirement
W ₁ V	(-)	Specific power requirement in laminar flow

Symbols Used

with respect to volume Specific power requirement in laminar flow

W1D (-) with respect to diameter

W1L (-) Specific power requirement in laminar flow with respect to length (-) Measured local tracer concentration

Xi Xi S (-) Mean tracer concentration (m) Layer thickness (-) Void fraction (Pas) Dynamic viscosity

(-) Standard deviation from the mean concentration

Indices

h homogeneous

I laminar

o at mixer inlet

D with respect to diameter

L with respect to length

V with respect to volume

Here (L/D) is the measured relative homogenization length of the mixer in question that is required to produce an acceptable mix.

If the pressure drop in a given pipe diameter has to be minimized, regardless of the mixer length, the Koch/Sulzer SMXL mixer is at least as efficient as the best "low pressure drop" mixers such as Kenics or Etoflo.

Mixing unit volume (liquid holdup H=eV)
$$V = W_{/V} \frac{\mathring{V}\eta}{\Delta p} = NeRe_D (L/D)^2 \frac{\mathring{V}\eta}{\Delta p}$$
 (d)

Mixing unit diameter
$$D^3 = \frac{4}{\pi} W_{ID} \frac{\dot{V}\eta}{\Delta p} = \frac{4}{\pi} NeRe_D(L/D) \frac{\dot{V}\eta}{\Delta p}$$
 (e)

Mixing unit length
$$L^{3} = \frac{4}{\pi} W_{\ell L} \frac{\dot{V} \eta}{\Delta \rho} = \frac{4}{\pi} NeRe_{D}(L/D)^{4} \frac{\dot{V} \eta}{\Delta \rho} \quad (f)$$

Ten Million To One, We Can Mix It.

In polymer processing and other laminar flow applications, you often have to contend with viscosity ratios as high as ten million to one.

The problem is how to mix these fluids effectively. And economically.

The solution is the SMX motionless mixer from Koch Engineering.

tt's built to handle your toughest mixing jobs. A

unique crossbar construction provides regular, geometric channels that split, rearrange, and recombine fluid streams for thorough, predictable, low-cost mixing.

But what makes the SMX really special is that it does all this in a shorter mixing length than other motionless mixers. And, in the long run, a shorter mixer can mean a less expensive mixer.

No moving parts, no maintenance.

The SMX has no moving parts, So it requires no maintenance or electrical power, It uses less energy than conventional dynamic agitators, And it takes up less space.

No other mixer – motionless or dynamic – can outperform the SMX in laminar flow.

In case your application calls for something different, Koch also produces the SMV mixer for turbulent flow and the SMXL for special heat transfer and slurry applications.

So for everything from high-viscosity mixing to low-viscosity blending there's a Koch unit to give you simple, efficient, maintenance-free mixing. Without moving.

If you'd like to know more, we'll send you our new full color brochure. Call or write Koch Engineering Company, Inc., Static Mixing Product Group, 161 East 42nd Street, New York, NY 10017, phone (212) 682-5755. Licensee of Sulzer Bros.

